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0

Background material

This chapter introduces notation and terminology and summarizes aspects of the
theories of affine and projective transformations, convex and star sets, and measure
and integration appearing frequently in the sequel.

Some passages are designed to ease the beginner into these areas, but not all the
material is elementary. It is intended that the reader start with Chapter 1, and use
the present chapter as a reference manual. For Chapter 1, the requisite material
is included in the first four sections of this chapter only, and for Chapter 2, the
requisite material is included in the first five sections only.

0.1. Basic concepts and terminology

This section is a brief review of some basic definitions and notation. Any unex-
plained notation can be found in the list at the end of the book.

Almost all the results in this book concern Euclidean n-dimensional space E”.
The origin in E” is denoted by o, and if x € E", we usually label its coordinates
by x = (x1,...,x). (In E2 and E3 we often use a different letter for a point
and label its coordinates in the traditional way by x, y, and z.) The Euclidean
norm of x is denoted by ||x||, and the Euclidean scalar product of x and y by
x - y. The closed line segment joining x and y is [x, y]. Points are identified
with vectors, and are always denoted by lowercase letters. For sets we usually
employ capitals, although we also use lowercase for straight lines. Script capitals
are used for classes of sets; an exception is the & we use for sets of directions
in Chapters 1 and 2, but here we are really identifying a direction with the line
through the origin parallel to it. The natural numbers, real numbers, and complex
numbers have the usual symbols N, R, and C. The letters i, j, k, m, and n denote
integers unless it is stated otherwise (in parts of the book i often represents a
real number), or unless we are working with complex numbers, when i2 = —1
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as usual. In particular, the default meaning of an expression such as 1 <i <n
isiefl,...,n}

The unit ball in E” is B = {x : |ix|| < 1}, with surface the unit n-sphere
S§"~1 = {x: ||x|| = 1}. When necessary we may write B” instead of B. We attempt
to reserve u for the members of $”~!, the unit vectors. If u € $” —1 then ut is the
(n — 1)-dimensional subspace orthogonal to u, and /,, the 1-dimensional subspace
parallel to u. Generally, S is used for a subspace, and S+ for its complementary
orthogonal subspace. The Grassmann manifold of £-dimensional subspaces of E”
is denoted by G(n, k). More often than not the topology on G(r, k) is unnecessary,
and the symbol then simply denotes the corresponding set of subspaces.

Translates of subspaces are called planes or flats, or hyperplanes if they are
(n —~ 1)-dimensional. A hyperplane divides the space into two half-spaces (half-
planes in E2). A ray is a semi-infinite straight line. If E is a set, the linear hull
lin E and affine hull aff E of E are, respectively, the smallest subspace and the
smallest plane containing E. The dimension dim E of a set E is the dimension of
its affine hull.

We say that two planes are parallel if one is contained in a translate of the other,
and orthogonal if, when translated so that they contain the origin, one contains the
complementary orthogonal subspace of the other. (These terms are often used by
other authors in a more restrictive way.) A slab is the closed region between two
parallel hyperplanes.

Suppose that Fi, F; are planes in E”, of dimensions d and d», respectively.
Then by [45, Theorem 32.1], either F1 N F> = @ordim(F1 N F) > dy +dx —n.
The planes Fy and F3 are in general position with respect to each other if either
di +dy < n, 1 N F», = @, and there is no direction parallel to both planes, or
di +dp > n and dim(F; N ) = d| + d; — n. See [45, pp. 88-90] for more
information. A finite set of points in E” is said to be in general position if no more
than k£ + 1 of them belong to any k-dimensional plane.

A few of our results are set in 2-dimensional projective space P?. Generally,
n-dimensional projective space P" can be defined as the space of 1-dimensional
subspaces of E"*!. The points of P* are labeled by homogeneous coordinates w =
(wy, ..., wys1), not all zero, so for real ¢ # O the points w and tw are identified;
see, for example, (45, p. 217]. In this way, P! can be regarded as the unit circle s!
with antipodal points identified. We can also identify E? with {w : w,{1 # 0},
where the usual coordinates are given by x; = w; /wy,41. The remaining set Hyo =
{w : wy41 = O} is the hyperplane at infinity (strictly speaking, a copy of P 1,
In particular, P? can be regarded as E? with a line at infinity (strictly speaking, a
copy of P!) adjoined.

Our terminology for set theory and topology is standard. If £ is a set, then | E],
co E, cl E, int E, and bd E denote the cardinality, complement, closure, interior,
and boundary of E, respectively; also, relint E is the relative interior of E, that is,
the interior of E relative to aff E. The relative boundary of E is the boundary of
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E relative to aff E. The symmetric difference of E and F is
EAF=(E\FYU(F\E).

A G setis a countable intersection of open sets, and an F;; set is a countable union
of closed sets. A set is of first category if it is the countable union of nowhere dense
sets, and of second category otherwise. A set in acomplete metric space is of second
category if and only if it is the complement of a set of first category, and this occurs
if and only if it contains a dense G set; see, for example, [437, pp. 158-60]. A
component of a set is a maximal connected subset. A closed set is regular if it is
the closure of its interior, and a body is a compact, regular set.
The diameter diam E of a set E is

diam £ = sup{|lx — y|| : x, y € E}.
If x is a point and E is a closed set, the distance between x and E is
d(x, E) =inf{||lx — y||: y€ E}.
If E and F are sets, and r is a real number, then
E+F=x+y:x€E yeF}],

and
rE={rx:x¢eF}.

A set E is called centered if —x € E whenever x € E, and centrally symmetric
if there is a vector ¢ such that the translate £ — ¢ of E by —c is centered. In the
latter case c is called a center of E. The center of a nonempty bounded centrally
symmetric set is unique.

If X is a subset of E”, or indeed any topological space, the support of a real-
valued function fon Xisthesetcl{x € X: f(x) # 0}. We denote by C(X) the
class of continuous real-valued functions on X. When X is an appropriate subset
of E”, C.(X) denotes the even functions in C(X), and C; (X) the nonnegative
functions in C.(X).

If f and g are real-valued functions, we say that f = O(g) on 4 C Rifthereis
aconstant ¢ such that | f(x)} < ¢|g(x)|forallx € 4. When 4 = N, we sometimes
say that f = O(g) as n — oo, while f = O(g) as x — 0 means that /' = O(g)
on A = (0, a) for sufficiently small a.

0.2. Transformations

No single book seems to provide a completely satisfactory introduction to the
various types of transformations of E” and P”; somehow the required material
falls between the texts on Euclidean or projective geometry currently available.
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Borsuk’s book [45] is possibly the most comprehensive text for this purpose, but
its notation is quite outdated.

If A is an n x n matrix, the inverse and transpose of 4 are denoted by A7
and A’. We call 4 singular ot nonsingular according to whether det 4 = 0 or
det A # 0, respectively; A~! exists precisely when A is nonsingular. We also
adopt the abbreviation 4~ for (A~ 1. Note that if 4 is nonsingular, then 4’ is
also, and (4)~! = (471",

For transformations ¢ of E" and P”, we shall permit ourselves the shorthand
¢x = ¢(x). The reader may find Figure 0.1 useful in interpreting the definitions
given below.

- A
similarity homothety

reflection in o
A rigid motion

dilatation . /
affine transformation

rotation
‘ '

linear transformation direct rigid motion translation

Figure 0.1. Transformations of a set K.

A linear transformation (or affine transformation) of E" is a map ¢ from E”
to itself such that ¢x = Ax (or ¢x = Ax + ¢, respectively), where A isann x n
matrix and ¢ € E". (Here x is considered as a column vector, of course.) We
call ¢ singular or nonsingular according to whether A is singular or nonsingular,
respectively. The group of nonsingular linear (or affine) transformations is denoted
by G L, (or G 4,); its members are, in particular, bijections of E” onto itself. The
group of special linear (or special affine) transformations of E” is denoted by SL,,
(or S4,, respectively). These are the members of G L,, (or G 4,) whose determinant
is one. We shall write det ¢ instead of det 4, and ¢!, ¢!, and ¢ for the affine
transformations with corresponding matrices 4™}, 4%, and 4™, respectively.

If A is the identity matrix, then ¢x = x 4, and the map ¢ is called a translation.
Each affine transformation is composed of a linear transformation followed by a
translation.
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Any set of n+ 1 points in general position in E” can be mapped onto any second
set of n + 1 points by a suitable affine transformation, and the latter is nonsingular
if the second set is also in general position (see [368, Theorem 7, p. 16]).

Let ¢ be a linear transformation. If the vectors x and y are parallel, then y = cx
for real ¢ and ¢y = c¢x. It follows that ¢ takes parallel vectors onto parallel
vectors. In fact (cf. [45, p. 156]), ¢ takes parallel k-dimensional planes onto parallel
k-dimensional planes.

An isometry of E" is a map ¢ such that ||¢x — ¢ y|| = ||x — y||; in other words,
a distance-preserving bijection. Isometries are also called congruences, and the
image and pre-image under an isometry are said to be congruent. Every isometry
is affine (see, for example, [45, p. 150] or [530, p. 139]). Examples of isometries
are the translations and the reflections, which map all points to their mirror images
in some fixed point, line, or plane. (In particular, ¢x = —x is the reflection in the
origin.)

If F =S8+ xg (where S € G(n, k), xo c E",and 1 <k <n—1)isak-
dimensional plane, and x € E”, then there are unique points y € S and z € S+
such that x = y+ z, and we can define a map taking x to y + x9 € F. This map is
the (orthogonal) projection on the plane F. It is a singular affine transformation.
If E is an arbitrary subset of E”, the image of E under a projection on a plane F
is called the projection of E on F and denoted by F|F. Since E|S is a translate of
E|F when F = S + xq, we almost always work with the former.

If ¢ € GL,, then

x-py=¢'x-y, 0.1

forall x, y € E”. The orthogonal group O, of orthogonal transformations consists
of those isometries of E” that are also linear transformations; these are precisely
the maps ¢ preserving the scalar product, that is, ¢x - ¢y = x - y. (An orthogonal
matrix satisfies 4/ = 47! and by (0.1) we have ¢ = ¢!, hence the name.) It
follows from this that orthogonal transformations have determinants with absolute
value one. As is shown in [45, Theorem 50.6], every isometry is an orthogonal
transformation followed by a translation, and for this reason isometries are some-
times also called rigid motions. The special orthogonal group SO, of rotations
about the origin consists of those orthogonal transformations with determinant
one. A direct rigid motion is a rotation followed by a translation; these do not
allow reflection.

A dilatation is a map ¢x = rx, for some r > 0. A homothety is a map
¢x = rx+t,forsomer > Oandt € E”, thatis, a composition of a dilatation with
a translation (this is sometimes referred to as a direct homothety). A similarity is a
composition of a dilatation with a rigid motion. We say two sets are homothetic (or
similar) if one of them is an image of the other under a homothety (or similarity,
respectively), or if one of the sets is a single point.
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We find occasional use for projective transformations of P”. Such a transfor-
mation is given in terms of homogeneous coordinates by ¢w = Aw - ¢, where 4
isan(n+ 1) x (n+ 1) matrix and ¢ € E"t! and where ¢ is called nonsingular if
det 4 # 0. Since we can regard P" as E” with a hyperplane H,, adjoined, we can
also speak of a projective transformation of E”. In this regard, another formulation
is useful. A projective transformation ¢ of E* has the form

x
bx = _¥x 0.2)
x-y+t
where ¥ € GA,, y € E", and ¢ € R, and ¢ is nonsingular if the associated linear
map

v, D) =Wx,x-y+1)

is nonsingular. If y = o, then ¢ is affine, but if y # o0, ¢ maps the hyperplane
H={x:x-y+t=0}onto Hy. To avoid points in a set £ being mapped into
Hyo, we may insist that ¢ be permissible for E; this simply means that ENH = §.

Projective transformations map planes onto planes (neglecting the points map-
ping to or from infinity); see [368, pp. 19-20]. They also preserve cross ratio; a
proof'is given in [45, Corollary 96.11]. (The cross ratio of four points p;, 1 <i <4,
on a line is defined by

_Nip3 = pillllpa — p2ll

Ilpa = pillllps — p2ll’

Affine transformations are also projective transformations, so the former also pre-
serve cross ratio.

The sets E and F are called linearly, affinely, or projectively equivalent if there
is a nonsingular transformation ¢, linear, affine, or projective and permissible for
E, respectively, such that 9 E = F. Suppose that E and F are bounded centered
sets affinely equivalent via a nonsingular transformation ¢. If ¢o = p, then p is
the center of F'; but since o is the unique center of F', we have p = o. Therefore
¢ is linear, proving that E and F are linearly equivalent.

(p1---, pa)

0.3. Basic convexity

There are several possibilities for an introduction to the basic properties of convex
sets. For the absolute beginner, Lay’s book [306] is recommended. The first chapter
of [368], by McMullen and Shephard, is terse, but very informative, as is the first
chapter of [459], by Schneider. The text of [535], by Yaglom and Boltyanskii,
is set out in the form of exercises and solutions, with plenty of helpful diagrams.
Chapters 11 and 12 of Berger’s two-volume set [23], [24], contain some wonderful
pictures, and Lyusternik’s little book {339] is quirky but delightful. A list of books
on convexity can be found in [459, p. 433}.
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A set C in E” is called convex if it contains the closed line segment joining
any two of its points, or, equivalently, if (1 — #)x +ty € C wheneverx, y € C
and 0 < ¢ < 1. A convex set, then, has no “holes” or “dents.” A convex body is
a compact convex set whose interior is nonempty; this definition conforms with
general usage, but the reader is warned that in the important texts of Bonnesen and
Fenchel [44] and Schneider [459] any compact convex set qualifies as a convex
body. The convex hull conv E of a set E is the smallest convex set containing it.

If C is a compact convex set, a diameter of C is a chord [x, y] of C such that
lx — yll =diam C.

A hyperplane H supports aset E atapoint x if x € £N H and E is contained
in one of the two closed half-spaces bounded by H. We say H is a supporting
hyperplane of E if H supports E at some point.

A convex body is strictly convex if its boundary does not contain a line segment
and smooth if there is a unique supporting hyperplane at each point of its boundary.

The intersection of a compact convex set with one of its supporting hyper-
planes is called a face, and (n — 1)-dimensional faces are also called facets.
An extreme point of K is one not contained in the relative interior of any line
segment contained in K. The point x is called an exposed point of K if there
is a supporting hyperplane H such that H N K = {x}. Every exposed point is
extreme, but the converse is not true. Also, a compact convex set is the closure
of the convex hull of its exposed points, implying that every compact convex set
has at least one exposed point (see [459, Section 1.4], especially Theorem 1.4.7).
A corner point of a compact convex set in E? is one at which there is more than
one supporting line.

If K1 and K are disjoint compact convex sets in E”, then there is a hyperplane H
that (strictly) separates K| and K7; thatis, K is contained in one open half-space
bounded by H, and K in the other. A proof can be found in [306, Theorem 4.12]
or {459, Theorem 1.3.71. (In infinite-dimensional spaces, this separation theorem
is closely related to the Hahn—Banach theorem; see [23, Section 11.4].)

Every affine transformation preserves convexity. If ¢ is a projective transfor-
mation, permissible for a line segment, then it maps this line segment onto another
line segment. Therefore ¢ preserves the convexity of convex bodies for which it
is permissible.

A nonempty subset C of E” is a cone with vertex o if ty € C whenever y € C
and ¢ > 0. A convex cone with vertex o is a cone with vertex o that is convex; such
a set is closed under nonnegative linear combinations. A cone (or convex cone)
with vertex x is of the form C + x, where C is a cone (or convex cone, respectively)
with vertex o.

Let us define some special convex bodies. The unit ball B in E” was de-
fined already. A ball is any set homothetic to B, and an ellipsoid is an affine
image of B. The centered n-dimensional ellipsoids whose axes are parallel to
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the coordinate axes are of the form

{x:Z%sl}.

i=1 a

B
e

If 0 < k < n, a k-dimensional simplex in E" is the convex hull of £ + 1 points
in general position.

A polyhedron is a finite union of simplices; in [E2, we shall use the term polygon
instead. A convex polyhedron or convex polytope can also be defined as the convex
hull of a finite set of points. We denote by F(P) the set of k-dimensional faces
of a convex polytope P.

Important examples of convex polytopes are the unit cube {x : 0 < x; < 1,
1 < i < n} (and centered unit cube {x : |x;| < 1/2,1 < i < n}) in E*;
the parallelepipeds or parallelotopes, affine images of the unit cube; the boxes,
rectangular parallelepipeds with facets parallel to the coordinate hyperplanes; and
the cross-polytopes (n-dimensional versions of the octahedron), each the convex
hull of » mutually orthogonal line segments sharing the same midpoint. An n-
dimensional pyramid P is the convex hull of an (n — 1)-dimensional convex
polytope Q (its base) and a point x ¢ aff Q called the apex of P.

A (right spherical) cylinder in E” is the Cartesian product of an (n — 1)-
dimensional ball C and a line segment orthogonal to aff C. A (right spherical)
bounded cone in E" is the convex hull of an (n — 1)-dimensional ball C and a
point on the line orthogonal to aff C through the center of C.

Topologically, a convex body is not very interesting. The surface of a convex
body K in E” is homeomorphic to §”~! via a radial map f, defined by selecting
a point xp € int K and letting

Sx) = (x —x0)/llx — xolf, (0.3)

foreachx € bd K.
A real-valued function on E” is convex if

FA=Dx+1ty) <A =1 f(x)+tf(y),

forall x, y € E" and 0 < ¢ < 1, and concave if — f is convex. (The terms concave
up and concave down are sometimes used for convex and concave, respectively.)

0.4. The Hausdorff metric

Exactly what does it mean to say that a sequence of compact sets converges to
another compact set? One must have a way of measuring the distance between two
compact sets. This notion of distance must behave like the usual distance d(x, y) =
|x — v between points, which has three fundamental properties: d(x, y) > 0, and
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equals zero if and only if x = y; d(x, y) = d(y, x); and the triangle inequality
d(x,z) <d(x,y) +d(y, 2).

Such a function is called a metric. We shall only define one metric for compact
sets here, though there are several in common use (see Lemma 1.2.14 for another).
The Hausdorff metric § on the class of nonempty compact sets in E” is defined by

8(E, F) = max{max d(x, F), maxd(x, E)}. 0.4)
xeF xeF

(A geometrically more appealing definition is given later.) It can be checked that
§ satisfies the three conditions listed earlier. The proof, and basic properties of the
metric space of compact sets in E” defined in this way, may be found in [306,
Section 14] or [459, Section 1.8]. For example, the space is complete, by [459,
Theorem 1.8.2].

Suppose that E is a nonempty set in E” and ¢ > 0. Then

E.=E+eB=Useg(x+¢B) 0.5)

is called an outer parallel set of E. When E is closed, E, is just the set of all
points whose distance from E is no more than . (See [306, Section 14], [459,
p. 134]; see also the illustration in the book [495, Fig. 1.1(b)] of Stoyan, Kendall,
and Mecke, and the interesting accompanying discussion on the utility of this
idea in the processing of images.) This convenient concept allows the following
alternative definition of the Hausdorff metric:

S(E,F)=min{e >0: EC F,and F C E.}. 0.6)

This means that the Hausdorff distance between two convex bodies K; and K3 is
at most ¢ if K is contained in the outer parallel body K> + ¢B of K;, and K3 is
contained in the outer parallel body K; + ¢ B of K.

The Hausdorff metric is the standard one in the study of convex sets. We denote
by K" (or K7) the space of nonempty compact convex sets (or convex bodies,
respectively) in E"” with the Hausdorff metric. (The definition of a body in Sec-
tion 0.1 implies the existence of interior points when the set is nonempty.) It is the
default metric, always used unless stated otherwise, for example, when discussing
continuity of a function defined on the class of compact convex sets. A specific,
and important, example of this is the continuity of volume on K”; see [306, The-
orem 22.6] or [459, Theorem 1.8.16]. (One should try not to be blasé about such
statements. After all, length is not continuous in E2, since one can approximate
a closed line segment arbitrarily closely by polygonal arcs whose lengths are un-
bounded. According to Young [539, p. 303], this disturbed Lebesgue greatly when
he was at school! In fact, length is only semicontinuous in E2.)

A very frequently quoted theorem is the following one, whose proof may be
found in [306, Section 15] or [459, Theorem 1.8.6].
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Theorem 0.4.1 (Blaschke’s selection theorem). Everybounded sequence of com-
pact convex sets has a subsequence converging to a compact convex set.

(A sequence of sets is bounded if there is a ball containing each member of the
sequence.) In [459, Theorems 1.8.13 and 1.8.15], it is shown thateach K € K" can
be approximated arbitrarily closely from within or without by convex polytopes.
This implies that the class of convex polytopes is dense in K”. It is also known
that both the class of smooth convex bodies and the class of strictly convex bodies
are dense in K"; see [459, Theorem 2.6.1].

0.5. Measure and integration

Measure theory deals with the definition and generalizations of the intuitive notions
of length, area, and volume. The subject is amply supplied with well-written books
appropriate for the novice. Many a student has learned the basics of Lebesgue
measure and integration and the rudiments of general measure theory from [437],
by Royden. At a slightly higher level, Munroe’s-book [397] is to be recommended.
Unfortunately, however, the geometric aspects of measure theory are often ignored
in the standard introductory texts. Exceptions are {530], by Weir (see Chapter 6
of Volume 1), and [258], by Jones (see Chapter 3). Of course, there are books on
geometric measure theory proper, but here we can only suggest a browse of the
first three of chapters of the entertaining and exquisitely illustrated introduction
{396] by Morgan; we use no advanced geometric measure theory in this book.

In practice one can get by without most of the complicated theory of abstract
measure. We summarize here the ingredients used in the sequel.

Consider, as a first example, area in the plane. Its essential properties are:

1. Familiar sets such as triangles, disks, and so on can be assigned a real number
representing the area of the set.

2. The area of a countable union of disjoint sets is the sum of the areas of the
sets; that is, area is countably additive.

3. The area of a set does not change when it is moved by a translation; that is,
area is translation invariant. In fact, area is even invariant under isometries.

The same properties hold for a generalized notion of length in the real line,
or volume in space. Length and area are denoted by A and A3, respectively. For
Chapter 1, this is all one really needs.

Sooner or later, it becomes necessary to talk about the area of less familiar sets.
It turns out that in order to retain the second and third properties, one has to give
up the hope of assigning an area to all subsets of the plane (at least, if one wishes
to use the commonly accepted axiom of choice). However, it can be shown that
the concept of area can be defined so that all open sets can be assigned an area.
Moreover, one can prove that the family of all sets that can be assigned an area
forms a o -algebra; that is, the family contains the empty set and is closed under
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the taking of complements and countable unions (and therefore also differences
and countable intersections). Since the family of Borel sets is, by definition, the
smallest o -algebra containing the open sets, all Borel sets can be assigned an area.

Again, the same comments apply to generalized length in the real line and
volume in space. Generalized length, area, and volume are examples of measures,
and the sets that can be assigned a generalized length, area, or volume are called
measurable sets. Among the measurable sets are those of measure zero, including
all countable sets, but also many uncountable sets. For example, the Cantor ternary
set in the real line has zero generalized length, and any line segment in the plane
has zero area. Sets of measure zero (sometimes called null sets) are often neglected
in measure theory, just as the number zero can be ignored in addition. For the
types of measures encountered in this book, one is never too far from sanity when
working with measurable sets, for it can be shown that each measurable set is
the union of countably many closed sets and a (necessarily measurable) set of
measure zero.

We are now ready for the formal definitions which abstract these ideas.

Let X be a set. A countably additive, extended real-valued function defined on
a o-algebra of subsets of X is called a signed measure; it is a measure if it is also
nonnegative. The members of the o-algebra are called measurable sets. We say
a measure [ iS o -finite if X is a countable union of sets of finite u-measure. A
measure 4 is said to be concentrated on a subset E of Xif u(X\ E) =0.If Xisa
topological space, and the o'-algebra consists of the Borel sets in X, the measure is
called a Borel measure. An arbitrary measure in X is called Borel regular if Borel
sets are measurable and every measurable set is contained in a Borel set of the
same measure. A property is said to hold p-almost everywhere or for p-almost all
x € X if there is a subset £ of X with u(F) = O such that the property holds for
allx e X\ E.

We generally use lowercase Greek letters for measures. This is the convention
adopted by most measure theorists, with the important exception of some who
work in geometric measure theory, who use capital script letters, such as the H
for Hausdorff measure (to be defined shortly). History has forced us to make,
reluctantly, an exception for the area measures, defined in Section A.2.

After measures are defined, one can deal with the integral (some authors reverse
this process). If u is a measure in X, the p-measurable extended real-valued
functions are those for which the inverse image of an open set is a measurable set.
When X is a topological space, there is also the class of Borel functions on X,
the extended real-valued functions for which the inverse image of an open set is
a Borel set. Every continuous function is Borel, and if  is a Borel measure, then
every Borel function is u-measurable. For certain functions f on X, a meaning
can be given to

[ fx)du(x),
F
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the integral of f over the measurable set £ C X, in such a way that in the familiar
case of anonnegative f defined on E”, the integral gives the volume under the graph
of 1. Nonnegative functions are called p-integrable on E if they are u-measurable
and the integral exists and is finite. An arbitrary function f is p-integrable if both
its positive part f and its negative part f~, defined by

fT(x) = max{ f(x),0} and £~ (x) = max{— f(x), 0},

are integrable. A bounded measurable function is integrable on any set of finite
measure. All this can be found in Chapters 4 and 11 of [437], for example.

One theorem in the theory of integration is of outstanding importance: Fubini’s
theorem (see [437, Theorem 19, p. 307]) says that in all reasonable circumstances,
the integral of a function on a product of two spaces equals both of the two iterated
integrals. (This allows, for example, the volume of a measurable set in E3 to be
calculated by integrating the areas of its sections by planes parallel to a given
plane.)

The n-dimensional Lebesgue measure X, in E" is often defined to be the
unique Borel-regular, translation-invariant measure in E” such that the unit cube
has unit measure. This provides one definition of generalized length in the real
line, area in the plane, and volume in space. Defined this way, however, A, is not
the most important measure. This honor goes to k-dimensional Hausdorff mea-
sure H* in E*, 0 < k < n. This is the standard way of measuring k-dimensional
volume in E”, so that, for example, one could use H' to measure the perimeter of
a disc, or ‘H2 for the surface area of a ball. The definition of Hausdorff measure
(see the texts of Morgan [396, p. 8] or Rogers [433, Chapter 2]) is somewhat
technical, but not really more so than the very commonly adopted definition of
Lebesgue measure in the real line via Lebesgue outer measure, as in Chapter 3
of [437], for example.

It is a convenient fact that the two measures A, and ‘H” agree in E” (see [396,
Corollary 2.8] or [433, Theorem 30]), provided the correct constant is included in
the definition of 1" . There is a similar agreement between H"~! and n-dimensional
spherical Lebesgue measure in S n=1 the unique Borel-regular, rotation-invariant
measure in E” such that $”~! has measure equal to the constant w, whose value
is given by (0.10). Indeed, it is well known that H"~! is Borel regular and rotation
invariant (see [433, Theorem 27 and p. 58]), and the fact that HN s = w,
follows from integration via the area formula in [396, 3.7, p. 25]. Therefore we
allow ourselves to speak loosely of k-dimensional Lebesgue measure in E* when
we really mean k-dimensional Hausdorff measure, and use A4 for integration in
planes or spheres. Two abbreviations should be noted: We shall write dx ford, (x)
in E” and du for dA,_1(u) in $"~ 1.

The measure HY (we shall write Ag) is just the counting measure, which counts
the number of points in a set.
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When no misunderstanding can arise — for example, when working with com-
pact convex sets — we sometimes call the A;-measure of a k-dimensional body in
E" its volume. This is traditional in geometry.

Often we want to work with the equivalence classes of measurable sets modulo
sets of measure zero, and here it is useful to write £ >~ F when A, (EAF) = 0.

Let ¢ € GA,. Then | det ¢| is the factor by which ¢ changes volume, that is,

An(@E) = | det p|, (E), ©0.7)

for each X,-measurable set E in E”; see [530, pp. 142-4]. It follows that the
members of SA4,, and more generally those maps in G 4, whose determinants are
=1, are volume preserving. It also follows thatif r > 0, then A, (r E) = r"1,(E).
More generally, if 1 < k < n, E is a Ax-measurable set in E”, and r > 0, then

A (FE) = rFar(E). (0.8)

We saw in Section 0.2 that ¢ takes parallel k-dimensional planes onto parallel
k-dimensional planes. If x —x’ = y— )/, then ¢x —x’ = py—¢y/, s0 ¢ preserves
the equality of lengths of parallel vectors. More generally, ¢ preserves the ratio of
Ar-measures of sets in parallel k-dimensional planes.

The volume of the unit ball in E” is given by

" /2

kn = Ag(B) = F(l—'f'%), 0.9)

with the convention xp = 1, and its surface area is
Wp = dn_1 (8" = nicy. (0.10)

The first computation is given in [ 348, pp. 324-5] and the second in [96, p. 125];
or see [463, p. 18]. To calculate special values of «,, one only needs ['(1 + x) =
xC(x), T'(1) = 1, and T'(1/2) = /7. It is interesting that «, increases with n
to its maximum value 872/15 when n = 5, and then decreases, approaching

Zero.
Using (0.9) and (0.7), one shows that the n-dimensional centered ellipsoid

{x: Y[ x?/a} < 1} has volume
a1dz - Ankn. (0.11)

The volume of a parallelepiped is the A,_j-measure of its base times its height
orthogonal to its base. The volume of the parallelepiped in E” with vertices at o,
Pls -, Pn is also given by

| det(pi;)l, (0.12)
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where p; = (pi1, ..., pin), and the volume of the simplex in E* with vertices at
0,y Pls---s Pn 1S

1
—ldet(pi)l, (0.13)
n!

as in [45, p. 117]. We have the formula
1
An(P) = ;Z}\n—l(Q) 0.14)

for the volume of a pyramid or bounded cone P with base O and height (the
distance from aff Q to the apex) z. This is easily obtained by integration and
induction, as in [23, 9.12.4.4] for the simplex; Dehn’s solution of Hilbert’s third
problem indicates that some form of limit argument is required (see the discussion
in [24, 12.2.5.2], for example).

We occasionally need other Borel measures in E” or 51, A signed Borel
measure i in $” ! is called even (or odd) if u(— E) = pn(E) (or u(—E) = —u(E),
respectively), for all Borel sets E.

Let i be ameasure in E” and E abounded setin E” of finite positive u-measure.
The centroid of E with respect to u is the point

1
c= ;(——E—)Lxdp,(x). (0.15)

The centroid of £ is contained in conv E; see [44, Section 6, p. 9].

There is another measure that is extremely important in geometry, and it occurs
in this fashion. It is sometimes essential to be able to measure the size of a set of
lines or planes, or to integrate a function defined on a set of lines or planes. We only
need to do this for sets of subspaces, that is, lines and planes containing the origin,
or generally for subsets of G(n, k). Moreover, our measure should be compatible
with the appropriate geometric transformations, so that, for example, the measure
of a subset E of G(n, k) should equal the measure of the set obtained by applying
the same rotation about the origin to each member of E.Fork = 1(ork =n—1),
this is easy: Just identify each 1-dimensional subspace (or (n — 1)-dimensional
subspace) S with the corresponding antipodal pair of points £ in 57! such that
the vector u is parallel to S (or orthogonal to S, respectively), and then use the
measure A, in S"=1 For 1 < k < n — 1, however, one needs a new measure,
which can be defined by the following general process.

Let X be a locally compact topological group. Then there is a nonzero Borel-
regular measure u in X that is also invariant under left translations by elements
of X. This measure w is called the Haar measure in X; it is unique up to
multiplication by a constant, and is finite if X is compact. A detailed proof of
its existence and uniqueness is given in the texts of Cohn [94, Chapter 9] and
Munroe [397, Section 17], for example. However, for the special case of most
interest here, this can be avoided. A clever direct construction due to Schneider



